
Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

1

Design Patterns
The Timeless Way of Coding

Designed and Presented by
Dr. Heinz Kabutz

Illustrations by Edith Sher

Copyright © 2001 Maxkab Solutions CC – All Rights Reserved

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

2

Dr. Heinz Kabutz
• Professional Java Programmer
• Received PhD in Computer Science from the

University of Cape Town, South Africa
• Trainer of Java and Design Patterns Courses in

various places of the world
• Publish advanced Java newsletter “Made in

Africa” that is reaching 99 countries
– This raises Africa’s technological image

• This is my 3rd visit to Mauritius!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

3

Structure of Talk
• Software Engineering

– as it happens in the software factories

• How Design Patterns fit in
• Two examples of Design Patterns
• Discussion time

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

4

1. Software Engineering
• Why do companies want experience?
• What experience is most valuable?
• Experience in which language will guarantee

you a job?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

5

Classic Methodologies
• e.g. Waterfall Model: Analysis, Design,

Implementation, Testing
• Suffered from “Analysis Paralysis”
• Bad decision during analysis very expensive
• Nice model for large teams with greatly varying

skill-sets
• Each iteration takes months

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

6

Agile Methodologies
• e.g. eXtreme Programming
• All programming is done in pairs

– For constant code reviewing, NOT mentoring

• Very short iterations (days or even hours)
• Testing is done several times a day
• Daily automated build and complete test
• Designing with Patterns
• Ruthless refactoring

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

7

Which Methodology to Use?
• Waterfall Model

– One or two excellent analysts
– Few good designers
– Lots of average programmers
– Suffers from “Peter Principle”

• eXtreme Programming
– Between 6 and 12 above average programmers per

team
– Fosters cooperation, not competition in team
– Low staff turnover
– Chaos if not strictly managed!!!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

8

Typical Day as Programmer
08:00 Arrive at work
08:30 Had first cup of coffee, erased SPAM
09:00 Chatted with coworker about soccer
10:00 Had project status meeting
11:00 Thought about design problems

 (Whilst playing minesweeper)
12:30 Looked at some critical bugs for important customer
13:30 Finished playing “Battlefield 1942” with colleagues
15:00 Wrote 200 lines of VB code, answered 5 phone calls
16:30 Company meeting entitled “Be more productive”
17:30 Wrote emails to bosses and colleagues (and

friends)
23:30 Time to go home – finished writing TCP/IP stack in

assembler

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

9

Programming is a Minority Task
• Most of your time is spent in:

– Meetings
– Documentation
– Planning
– Testing, bug fixing & support
– Email

• Even brilliant programmers have to
communicate!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

10

Design Language can Help
• Meetings

– Communicate more effectively about your designs to
colleagues

• Documentation
– Code documentation can refer to Design Pattern

• Planning
– You can talk in higher-level components

• Testing, bug fixing & support
– Better designs will reduce bugs and make code

easier to change

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

11

2: Introduction to Patterns

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

12

Vintage Whiskey
• Design Patterns are like good whiskey

– You cannot appreciate them at first
– As you study them you learn the difference between

single-malt and normal whiskey
– As you become a connoisseur you experience the

various textures you didn’t notice before

• Warning: Once you are hooked,
you will no longer be satisfied
with cheap stuff!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

13

Why are patterns so important?
• Provide a view into the brains

of OO experts
• Help you understand existing

designs
• Patterns in Java, Volume 1,

Mark Grand writes
– "What makes a bright, experienced programmer

much more productive than a bright, but
inexperienced, programmer is experience."

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

14

UML Refresher – Inheritance

 implements extends

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

15

UML Refresher – Links

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

16

UML Refresher – Dependencies

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

17

UML Refresher – Access
• public access represented by +
• private access represented by –
• protected access represented by #
• package access represented by no symbol
• static access shown as underlined
• abstract methods show in Italics

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

18

Design Patterns Origin
The Timeless Way of Building

Christopher Alexander
 There is a central quality which is the root
criterion of life and spirit in a man, a town, a

building, or a wilderness.
 If you want to make a living

flower, you don’t build it
physically, with tweezers,

cell by cell. You grow it
from the seed.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

19

Textbook – “Design Patterns”
• “Design Patterns” book by

Gang of Four (GoF)
• Contains a collection of

basic “patterns” that
experienced OO developers use regularly

• Cannot proceed very far in Java, C#, VB.NET
without understanding patterns

• Facilitates better communication
• Based on work of renegade architect

Christopher Alexander in “The Timeless Way of
Building”

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

20

What’s in a name?
The Timeless Way of Building

The search for a name is a fundamental part
of the process of inventing or discovering a

pattern.
So long as a pattern has a weak name, it
means that it is not a clear concept, and

you cannot tell me to make “one”.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

21

Why do we need a diagram?
The Timeless Way of Building

If you can’t draw a [class] diagram of it, it
isn’t a pattern

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

22

Misuse of Design Patterns
• Patterns Misapplied

– “design” patterns should not be used during analysis

• Cookie Cutter Patterns
– patterns are generalised solutions

• Misuse By Omission
– reinventing a crooked wheel

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

23

Summary
• Object Orientation is here to stay
• Design Patterns will fast-track you in learning

how to design with objects

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

24

3. Singleton

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

25

Singleton
• Intent

– Ensure a class only
has one instance, and
provide a global point
of access to it.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

26

Motivation: Singleton
• It’s important for some classes to have exactly

one instance, e.g. SecurityModule

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

27

Sample Code: Singleton
public class SecurityModule {
 private static SecurityModule instance =
 new SecurityModule();

 public static SecurityModule getInstance() {
 return instance;
 }

 private SecurityModule() {
 loadPasswords();
 }

 public UserContext login(String username,
 String password) {
 return new UserContext(username, password);
 }

 // etc.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

28

Applicability: Singleton
• Use the Singleton pattern when

– there must be exactly one instance of a class, and it
must be accessible to clients from a well-known
access point.

– when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

29

Structure: Singleton

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

30

Consequences: Singleton
• Benefits

– Controlled access to sole instance
– Reduced name space
– Permits refinement of operations and representation
– Permits a variable number of instances
– More flexible than class operations

• Drawbacks
– Overuse can make a system less OO.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

31

Known Uses in Java: Singleton
• java.lang.Runtime.getRuntime()
• java.awt.Toolkit.getDefaultToolkit()

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

32

Questions: Singleton
• The pattern for Singleton uses a private

constructor, thus preventing extendability. What
issues should you consider if you want to make
the Singleton “polymorphic”?

• Sometimes a Singleton needs to be set up with
certain data, such as filename, database URL,
etc. How would you do this, and what are the
issues involved?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

33

Exercises: Singleton
• Turn the following class into a

Singleton:

public class Earth {
 public static void spin() {}
 public static void warmUp() {}
}

public class EarthTest {
 public static void main(String[] args) {
 Earth.spin();
 Earth.warmUp();
 }
}

• Now change it to be extendible

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

34

4. Page-by-Page Iterator

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

35

Page-by-Page Iterator
• Intent

– Efficiently access a large, remote list by retrieving its
elements one sublist of value objects at a time.

• Also known as
– Paged List, Value List Handler

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

36

Motivation: P-b-P Iterator

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

37

Applicability: P-b-P Iterator
• Use a page-by-page iterator to access a large

list of server-side data when:
– the user will be interested in only a portion of the list

at any time.
– the entire list will not fit on the client display.
– the entire list will not fit in memory.
– transmitting the entire list at once would take too

much time.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

38

Structure: P-b-P Iterator

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

39

Consequences: P-b-P Iterator
• Benefits

– Alternative to EJB Finders for large queries
– Caches query result on server side
– Provides better querying flexibility
– Improves network performance

• Less server-side data is transferred

– Can defer entity bean transactions

• Drawbacks
– More server requests are made
– The iterator is not robust

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

40

Known Uses: P-b-P Iterator
• PetStore example:

– CatalogDAO returns a ListChunk object

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

41

Questions: P-b-P Iterator
• How many rows would you need in the result

set for this pattern to be useful? Why?
• What optimizations could you add to increase

the speed of data retrieval?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

42

Exercises: P-b-P Iterator
• Design a Page-by-Page Iterator that uses a

background thread to prefetch data.
• Draw a sequence diagram of what method calls

are required to fetch some data from the P-b-P
Iterator.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

43

5: Composite

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

44

Composite
• Intent

– Compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects
uniformly.

• Intent according to Vlissides
– Assemble objects into tree structures. Composite

simplifies clients by letting them treat individual
objects and assemblies of objects uniformly.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

45

Motivation: Composite

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

46

Sample Code: Contact
public abstract class Contact {
 public void add(Contact contact) {}
 public void remove(Contact contact) {}
 public abstract void sendMail(String msg);
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

47

Sample Code: Person
public class Person extends Contact {
 private final String email;
 public Person(String email) {
 this.email = email;
 }

 public void sendMail(String msg) {
 System.out.println("To: " + email);
 System.out.println("Msg: " + msg);
 System.out.println();
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

48

Sample Code: DistributionList
import java.util.*;
public class DistributionList extends Contact {
 private List contacts = new LinkedList();
 public void add(Contact contact) {
 contacts.add(contact);
 }
 public void remove(Contact contact) {
 contacts.remove(contact);
 }

 public void sendMail(String msg) {
 Iterator it = contacts.iterator();
 while(it.hasNext()) {
 ((Contact)it.next()).sendMail(msg);
 }
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

49

Sample Code: MailClient
public class MailClient {
 public static void main(String[] args) {
 Contact tjsn = new DistributionList();
 tjsn.add(new Person("john@aol.com"));
 Contact students = new DistributionList();
 students.add(new Person("peter@intnet.mu"));
 tjsn.add(students);
 tjsn.add(new Person("anton@bea.com"));
 tjsn.sendMail(
 "welcome to the 5th edition of ...");
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

50

> java MailClient
To: john@aol.com
Msg: welcome to the 5th edition of ...

To: peter@intnet.mu
Msg: welcome to the 5th edition of ...

To: anton@bea.com
Msg: welcome to the 5th edition of ...

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

51

Applicability: Composite
• Use the Composite pattern when

– you want to represent part-whole hierarchies of
objects.

– you want clients to be able to ignore the difference
between compositions of objects and individual
objects.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

52

Structure: Composite

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

53

Consequences: Composite
• Benefits

– defines class hierarchies consisting of primitive
objects and composite objects

– makes the client simple
– makes it easier to add new kinds of components

• Drawbacks
– can make your design overly general

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

54

Known Uses: Composite
• java.awt.Component
• java.io.File

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

55

Questions: Composite
• The Composite Pattern is one of the most

commonly used patterns in Object
Orientation. How would you go about
designing the Mailing List example without
this patterns, i.e. without having a common
superclass?

• What maintenance issues would this cause?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

56

Exercises: Composite
• Add isLeaf():boolean and

children():Iterator methods to Contact.
children() returns an Iterator of all children of
the current contact (not recursively). Leaves
would return a NullIterator (which is a
Singleton).

• Write an external ContactIterator class that
returns all the leaves below a Contact.

• Map the Contact example to a relational
database.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

57

6. Design Patterns Course
• Easiest way to learn Design Patterns is through

a course:
– http://www.javaspecialists.co.za

• 3 days of action packed learning fun

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

58

Design Patterns Cape Town

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

59

Design Patterns Germany

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

60

Design Patterns London

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

61

Design Patterns
Switzerland

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

62

Design Patterns Estonia
at –18o Celsius

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

63

Design Patterns
 Mauritius
2001, 2004, 2005,
2006?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

64

My Dream
• Africa taking a technological lead

– e.g. Mark Shuttleworth

• Mauritius as cyber island with excellent
programmers
– Not just cheap, but good solid quality
– Able to compete with Eastern Europe

• Coming back to your beautiful island, year after
year

